Kernel-Based Metric Adaptation with Pairwise Constraints
نویسندگان
چکیده
Many supervised and unsupervised learning algorithms depend on the choice of an appropriate distance metric. While metric learning for supervised learning tasks has a long history, extending it to learning tasks with weaker supervisory information has only been studied very recently. In particular, several methods have been proposed for semi-supervised metric learning based on pairwise (dis)similarity information. In this paper, we propose a kernel-based approach for nonlinear metric learning, which performs locally linear translation in the kernelinduced feature space. We formulate the metric learning problem as a kernel learning problem and solve it efficiently by kernel matrix adaptation. Experimental results based on synthetic and real-world data sets show that our approach is promising for semi-supervised metric learning.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملSemi-supervised clustering with metric learning: An adaptive kernel method
Most existing representative works in semi-supervised clustering do not sufficiently solve the violation problem of pairwise constraints. On the other hand, traditional kernel methods for semi-supervised clustering not only face the problem of manually tuning the kernel parameters due to the fact that no sufficient supervision is provided, but also lack a measure that achieves better effectiven...
متن کاملSemi-Supervised Metric Learning Using Pairwise Constraints
Distance metric has an important role in many machine learning algorithms. Recently, metric learning for semi-supervised algorithms has received much attention. For semi-supervised clustering, usually a set of pairwise similarity and dissimilarity constraints is provided as supervisory information. Until now, various metric learning methods utilizing pairwise constraints have been proposed. The...
متن کاملA Scalable Kernel-Based Algorithm for Semi-Supervised Metric Learning
In recent years, metric learning in the semisupervised setting has aroused a lot of research interests. One type of semi-supervised metric learning utilizes supervisory information in the form of pairwise similarity or dissimilarity constraints. However, most methods proposed so far are either limited to linear metric learning or unable to scale up well with the data set size. In this paper, we...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005